Name KEY Chem 227 / Dr. Rusay / Exam 2

- 1) [3pts] Which of the following is as an electrophilic reagent which can react with an enolate ion?
- A) NH₃ (B) NH₄+ C) CH₃OH D) AlCl₄ E) NaBH₄
- 2) [3pts] Which of the following molecules will have the highest dipole moment?

3) [3pts] What is the major product of the following reaction?

$$CH_{3} \longrightarrow CH + OH - \frac{CH_{3}CCH_{3}}{100^{\circ} C} ? cH_{3} \longrightarrow CH_{2} Cet_{3} \longrightarrow CH_{3}$$

$$CH_{3} \longrightarrow CH \longrightarrow CH \longrightarrow CH_{3} \longrightarrow CH_{3}$$

4) [3pts] When the following diketone cyclizes in basic solution, which compound is the **major** product?

5) [8pts] A compound was analyzed and found to have a molecular formula of $C_6H_{12}O$ with a very weak UV absorbtion at 310 nm. The IR, NMR and principal MS fragment data follow.

¹H: chemical shift; splitting; integration

MS: m/e

42 43 57

58

a) Provide a structure for the compound and b) a structure to explain the weak IR peak at 3500 cm⁻¹ and c) MS fragments at 42 and 58 with an illustration of how these two rearrangement fragments formed.

58

6) [12pts] The following dione was synthesized by the Stork method from an enamine of a ketone and (+) 2,5-dimethyl pyrrolidine followed by treatment with acetyl chloride. An optical yield of 80% of the R- isomer was obtained. Draw the structure of the enamine.

a) Name the ketone in the reaction that produced the enamine.

Propiophenone

b) What % of the S- isomer is present in the product? <u>10</u>

c) Draw the R- isomer of the product.

- d) What is the best description for this type of reaction?
- A) Alkylation (B) Acylation C) Ring Annelation
- D) 1,4 Addition

- 7) [3pts] Circle the structure that is an acetal or ketal.
 - O OCH₃

 I

 II

 CH₃

 CH₂

 OH

 CH₃

IV

8) [6pts] a) Circle the Wittig reagent that could be used to synthesize the following alkene:

?
$$CH_{3}CH=P(C_{6}H_{5})_{3}$$

$$OP \qquad II$$

$$P(C_{6}H_{5})_{3}$$

$$CH_{3}CH_{2}CH=P(C_{6}H_{5})_{3}$$

$$III$$

$$IV$$

- b) Write the structure for the carbonyl compound that would be reacted with the Wittig reagent you chose above to produce the alkene:
- ω I) c_{B}^{C} II) c_{B}^{C}

9) [3pts] What is the major product of the following addition reaction?

1,4 add'n

$$\frac{1. \quad (C_6H_5)_2CuLi}{2. \quad H_2O} ?$$

10) [5pts] Rank the following compounds in order of decreasing basicity.

I > II > V > V > I

- 11) [5pts] Rank the following compounds in order of decreasing boiling point.
- A) $CH_3CH_2CH_2NH_2$ $46^{\circ}C$ B) $(CH_3)_3N$ (b.p.= 3°C)
- C) CH3CH2NHCH3 374
- D) CH₃CH₂CH₂OH 976 E) CH₃CH₂OCH₃ 106

12) [4pts] Two compounds with the same molecular ion in their Mass Spectra but different boiling points were obtained form the following reaction. Draw their structures indicating their respective stereochemistry.

13) [3pts] A single product was obtained from the following reaction. Draw its structure.

14) [3pts] Provide the structure of the product which was produced on refluxing the intermediate formed from the reaction of the following α , β - unsaturated ketone with the enolate of methyl-dimethylmalonate and aqueous sodium hydroxide followed by boiling the reaction mixture with a stoichiometric excess of hydrochloric acid.

15) [3pts] Draw the tautomer for the following barbiturate:

17) [3pts] Mescaline and amphetamines have structural similarities to neurotransmitters, serotonin and adrenalin. Circle the common structural feature that is likely accountable for their neurological activity.

$$\begin{array}{c|c} CH_3O & \hline \\ CH_2O & \hline \\ CH_2CH_2NH_2 & \hline \\ CH_2CH_2NH_2 & \hline \\ CH_2CH_2NH_2 & \hline \\ \end{array}$$

18) [6pts] Complete the reaction and write the equilibrium expression for Ka.

$$CH_{3} + H$$

$$CO_{2}CH_{3}$$

$$CH_{5} - N - H$$

$$CH_{5} - N - H$$

$$CO_{2}CH_{5}$$

$$CH_{5} - N - H$$

$$CH_{7} - N - H$$

$$CH_{7} - N - H$$

19) [5pts] Complete the following:

Draw the appropriate carbanion and show electron movement with arrows from it to the enolate.